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1.0 SUMMARY 

 

The transition of commercial and proprietary technology to an open source capability was previously 

supported by the initial development [1] of the Open Component Portability Infrastructure (OpenCPI), 

and that became the basis for this effort. The project described in this report built upon that OpenCPI 

foundation, and in so doing establishes OpenCPI as an important and viable software development 

framework.  

This effort focused on the concepts of the software Component-Based Development (CBD). Software 

applications can be assembled from snippets of codes that were originally written, tested and 

implemented in other applications, which is expected to reduce the development costs of new 

acquisitions. Heterogeneous processing allows the mixing and switching of different types of processing 

technologies. The integration of different configurations of General Purpose Processors (GPPs), Graphics 

Processing Units (GPUs), and Field Programmable Gate Arrays (FPGAs) in a multi-processing 

computing platform facilitates the advantageous exploitation of each of these processor types in a 

complete system that can be tailored for a specific use. The attributes of embedded processors make these 

processors necessary to meet the requirements in many military acquisitions. This is reflected in not only 

the additional processing power, but also in the Size, Weight and (electrical) Power (SWAP) 

requirements. Proprietary restrictions and other considerations have resulted in the redevelopment of 

legacy codes. To be fully available to the acquisition community, open source licensing is advantageous 

for all aspects of this technology, including the codes. Appropriate restrictions are required for sensitive 

technologies. 

OpenCPI was developed to meet the challenges of effectively, productively, and efficiently exploiting 

heterogeneous processing for embedded missions. OpenCPI employs a component-based development 

methodology with supporting tools and a runtime environment for applications consisting of components 

that can be executed on several different computing processor types. OpenCPI effectively crosses the 

boundaries between these diverse processor technologies. Documents describing OpenCPI can be found 

on the OpenCPI web site [2], which includes a preliminary technical summary document [3].  

This effort developed component based systems, including well-defined, open, and portable application 

programming environments for embedded, heterogeneous, and multi-processor applications. Also 

developed were application structures, the connectivity between different computing processor types, and 

hardware platform elements. A control plane model was developed that includes a Human/Computer 

Interface (HCI). A management model was developed for the install/upgrade/uninstall and the 

startup/shutdown of the application and hardware subsystems. The specific baseline software platform 

that was developed has capabilities in several areas critical to the embedded Department of Defense 

(DoD) needs, including communications management that is suitable for fabric-based interconnection 

technologies.  

This project addressed the key functional gaps in the original open source prototype that have inhibited 

OpenCPI adoption. The technology was hardened and matured to increase the Technology Readiness 

Level (TRL). The barriers to its development, testing, adoption and implementation were addressed, and 

the suitability for applying OpenCPI to specific applications was determined.  

The work proceeded according to technical, staffing, partnering and funding dependencies, but is 

described here in a logical technical breakdown, rather than following the actual timeline. Since OpenCPI 

is based on and embraces the principles of open source software, the software, firmware, FPGA codes, 

tools, and documentation were all posted on the Opencpi.org web site [2] and released under an open 
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source license0F

1
. The key technical results of this work were embodied in the new and improved evolution 

of OpenCPI, as it addressed a combination of technical gap filling, hardening and ease-of-use 

enhancements. 

In addition to these technical enhancements, several integration and application experiments were 

performed to assess and demonstrate how OpenCPI could coexist with other relevant frameworks for 

image and software radio processing, and how well OpenCPI served as an application environment for 

specific applications.  These efforts included instrumentation and measurements. 

Outreach and community building exposed OpenCPI to additional users inside and outside of the defense 

and intelligence communities.  Some of this was based on ad hoc meetings and briefings, but there were 

several formal briefings of OpenCPI at conferences. 

                                                      

1
Lesser GNU Public License 3 (LGPL3) 
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2.0 INTRODUCTION 

This project consisted of two phases over 25 months that spanned from September 2010 through October 

2012.  This project is described as one project, since the second phase of the effort was an extension of 

the first phase, and was a six-month application technology transition facilitator study. 

The underlying OpenCPI baseline architecture was a software-defined platform, originally motivated by 

the Department of Defense (DoD) Programmable Communication Terminals. It was based on and was 

compliant with the Software Communication Architecture (SCA) developed in the Joint Tactical Radio 

System (JTRS) program [4].   

This report describes improvements to the capabilities and applicability of OpenCPI, and to the expansion 

of the actual community of users. OpenCPI addresses several dimensions of diversity and heterogeneity 

in embedded systems, and this project addressed each dimension in turn by expanding the range of the 

supported configurations. 

In extending OpenCPI there was a risk that the extension would not be completely compatible with the 

existing software architecture. The internal OpenCPI architecture was adjusted to encompass these new 

extensions. A brief introduction to each effort is included here, with a more detailed description in later 

sections. 

2.1 Authoring Model 

An Authoring Model is based on a common software language and tool to provide the translation of a 

common software language to other processor-type specific languages. An Authoring Model also 

addresses abstract conceptual executions and communications. Here the communications are further 

complicated by the requirement that some component interfaces have multiple language translations, as 

different components may each have their own specific software language.  Adding to this complexity is 

that the Authoring Model must handle diversity, as there may be more than one way to correctly program 

components that achieves the same functionality.    

The Resource-Constrained C-language (RCC) model is a basic and simple model for writing components 

in the C language. At a conceptual level, this same model could be rendered and supported in other 

programming languages including C
++

, Java, and Python.  Here the language coverage of the RCC model 

was not expanded beyond C, but was simplified and expanded in several ways based on the experience 

that was gained from our writing new components and applications. 

The Hardware Description Language (HDL) is an Authoring Model which supports the writing of codes 

for FPGA and Application-Specific Integrated Circuit (ASIC) processor components. As used here, the 

HDL was applied to the Verilog, the Very High Speed Integrated Circuit (VHSIC)-Hardware Description 

Language (VHDL), the System-Verilog, the Bluespec System-Verilog, and the System-C processor-

specific languages. At the start of this project OpenCPI supported the Verilog language for the OpenCPI 

HDL Authoring Model. A major effort here led to supporting the VHDL language, since an application 

was received that was written in VHDL. This is an example of adding language support to an existing 

Authoring Model. 

A new Authoring Model was designed and implemented for components executing on GPUs, which 

extended the OpenCPI’s processor heterogeneity. This effort targeted the Open Computing Language 

(OpenCL) dialect of C, which is supported by most graphic and some multi-core processor vendors, and 

is called the OpenCL Authoring Model (OCL). It can be conceptually applied to other GPU-oriented 

languages and environments such as NVIDIA’s Compute Unified Device Architecture (CUDA1F

2
). Efforts 

                                                      
2
 CUDA is a parallel computing platform and programming model created by NVIDIA, and implemented 

on NVIDIA GPUs. 
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for a GPU Authoring Model combined conceptualizing a new Authoring Model with specifically 

prototyping it in the OpenCL language dialect of C using the associated low level Application 

Programming Interfaces (APIs). 

In summary, the RCC Authoring Model was enhanced to simplify specific use cases, and the HDL model 

[5] was extended with support for the VHDL language. A new GPU-oriented Authoring Model was 

defined, and OpenCL was the target language. 

2.2 Data Plane 

OpenCPI software that supports the data plane mechanism is a transfer driver. As defined in the OpenCPI 

Technical Summary [3], a data plane is the means by which system components communicate with each 

other at runtime. The different components and parts of real heterogeneous embedded systems use several 

mechanisms to connect with each other. The top-level distinction among such communication methods is 

whether the communications are collocated. It is advantageous for collocated communications to occur 

among processor components in the same execution environment. To achieve this, an Authoring Model 

must maximize the efficiency of collocated communications.  

This project developed support for additional key data plane scenarios that had not been previously 

supported. A new data plane mechanism was implemented for clustered applications, which targeted the 

remote Direct Memory Access (DMA) mechanisms and APIs promulgated by the Open Fabrics 

Enterprise Distribution2F

3
 (OFED), which is typically deployed over either 10 Gbps or 40 Gbps Infiniband 

hardware in clustered environments. As with all of the OpenCPI transfer drivers, this is transparent to 

how the components are written in the Authoring Models. This process allowed for collocated 

components that were executed on a single processor, or on separate processors comprising a cluster 

connected with Infiniband, to execute without being changed or recompiled. 

A datagram is a self-contained, independent entity of data that carries sufficient information to be routed 

from its source to a destination processor without the reliance of earlier exchanges between its source, the 

destination processor and the transporting network. Support was developed for datagram transports by the 

OpenCPI data plane, which additionally guaranteed message delivery and the order of the message 

delivery. An application-level communication system to support these datagram transports is the Network 

File System (NFS). Similarly, the Remote Direct Memory Access (RDMA) model of communication [6] 

used by the OpenCPI data plane can benefit from directly using datagram transports such as User 

Datagram Protocol (UDP)/Internet Protocol (IP), as well as the link layer (L2) Ethernet Protocol. Support 

for an FPGA platform by Ethernet transport was also developed. 

Another class of the OpenCPI data plane communication is components communicating to the outside 

world.  There are scenarios where applications require the inputs or outputs of a component’s port to 

communicate outside of the OpenCPI environment, and not to another OpenCPI component. A different 

driver type provides a bridge between the OpenCPI data plane system and the external 

communication/middleware systems.  Two such external connections were developed that allowed 

applications to connect a component port to Data Distribution Service 3F

4
 (DDS) and to the Common Object 

Request Broker Architecture 4F

5
 (CORBA) middleware. These bridges allowed the OpenCPI applications to 

communicate with other middleware systems without changing a line of code or recompiling components. 

                                                      
3
 http://www.openfabrics.org. 

4
 publish-subscribe data to other DDS applications 

5
 Send and receive messages are communicated to external applications using CORBA. 
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2.3 Platforms 

Embedded systems are built with a wide range of technologies. The OpenCPI model of a platform 

includes the processors in a system, as well as the ways that the processors are interconnected. Each class 

or type of processor, operating system, and compiler tool set is specifically supported. The processor 

interconnection technologies are supported for the data-plane communications, and some of the 

communication paths are also supported for the control-plane communications. There were two major 

new platform efforts in this project, the support for the Altera FPGA platforms and associated tools, and 

specific support for the application-oriented platform Ettus N210 Universal Software Radio Peripheral.  

The Altera efforts advanced the support for the FPGA vendor Altera to bring it to a level similar of that of 

the existing OpenCPI support for the FPGA vendor Xilinx.  This included both device and hardware level 

support, including the PCI bus/fabric connections, the memory controllers, and tool support. The 

inexpensive tools that were available were specific to each of these two vendors. 

The Ettus N210 platform efforts were a combination of supporting a new FPGA processing chip, the 

Xilinx Spartan 3A-DSP3400, and associated tools. Also supported were the Ethernet interconnect for the 

control and the data planes, and the FPGA implementation of the datagram protocol. The Input-Output 

(IO) devices required by the application were also supported, including the attached 2-channel quadrature 

Analog-to-Digital Converter (ADC). 

The basic generic support for the FPGA platforms was also enhanced to simultaneously discover and 

support the multiple platforms connected either via PCI Express fabrics or link layer Ethernet 

connections.  This also included a Universal Unique Identifier (UUID) mechanism for determining 

whether the currently loaded FPGA bitstream was the one needed by an application, which was reloaded 

as needed. 

2.4 Integration 

Even though mixed application-specific frameworks frequently embody lower level middleware and 

execution models that are incompatible with each other, these frameworks are commonly used in 

embedded systems. OpenCPI is non-application-specific and can be used across a range of application 

areas. Several experimental tasks were undertaken to combine OpenCPI with other frameworks to 

determine when coexistence synergies were possible. 

The widely used open source computer vision library Open Computer Vision (OpenCV) was 

experimentally integrated with OpenCPI in collaboration [7] with the Massachusetts Institute of 

Technology. This OpenCV application was embedded inside of OpenCPI, and then ported. OpenCPI 

image-processing components were experimentally determined to directly reproduce those of OpenCV. 

This not only showed coexistence, but also demonstrated that the transfer of an algorithm code from one 

open source project to another was possible. This new set of image processing components was then 

added to the OpenCPI component library. 

The Software Communication Architecture (SCA) is a DoD-created middleware framework for software 

radio applications.  It was an important motivator for the early OpenCPI work, and established the value 

of having component-based designs in embedded DoD applications.  When OpenCPI was created in an 

earlier project, it was developed as a stand-alone capability that did not rely on other middleware.  In this 

project a preliminary integration was performed to prove that a SCA-compliant system could be created 

using OpenCPI as the underlying component, which avoided any inefficiencies of completely layering 

one application on top of the other. Since the SCA did not have a heterogeneous component model, non-

GPP processors were supported in this integration by creating high-level proxy CORBA objects for the 

underlying OpenCPI components. The SCA requires all of the components to be represented as CORBA 

objects. 
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2.5 Ease of Use 

Efforts were undertaken to simplify the user experience, and other efforts focused on first-time users. 

Earlier efforts focused on the process of creating components. Here several significant features were 

added to simplify and clarify how to describe an application comprised of controlled and executed 

components.  These included an updated and simplified API for the main program to create, connect, and 

control components in an application, a library path mechanism to enable components in an application to 

be found in a number of different component libraries, and mechanisms to allow convenient textual 

component property values to be applied to components, including sequences, structures and 

multidimensional arrays. 

Another effort focused on enabling entire applications to be described in the Extensible Markup Language 

(XML) and executed by a utility program, which entirely avoided writing or compiling top level 

applications for the main program.  These included the XML attributes that determine when an 

application was completed, and an expression-based scoring system for selecting among the alternative 

feasible component implementations found by the library search path mechanism. 

2.6 Maturity/Testing 

Increasing the maturity and robustness of OpenCPI was an important goal of this project. Early in the 

project a number of unit test and continuous integration system tools were evaluated, and the gtest5F

6
 and 

the Hudson6F

7
 [8] were selected. Both of these tools were installed and configured, which resulted in 

additional testing capabilities in the OpenCPI repository. 

A major improvement in the robustness of OpenCPI was achieved as new components, examples, and 

applications were developed and tested, and this resulted in updated OpenCPI software. Several FPGA 

and software component unit testing capabilities were also developed that included FPGA elements for 

inter-component protocol monitoring, and generic unit testing for both software and FPGA 

implementations utilizing the same component. 

2.7 Performance Measurements 

Performance measurements were necessary so that performances could be determined during component 

and application development. Platform/infrastructure developers and system engineers need to understand 

the system level performance characteristics in order to achieve the correct and appropriate performance 

evaluations. General measurements are necessary when evaluating the OpenCPI framework for use in 

other projects. 

At the start of the project, OpenCPI had some timekeeping and event recording capabilities. The 

timestamping of some events inside FPGA platforms, while synchronized with GPS time, was not 

synchronized with the software event timekeeping subsystem. These time-bases were enhanced to provide 

synchronized time across the FPGAs and other software processors in a system. Events that were 

recorded based on different system clocks were correlated in output mechanisms utilizing a GTKWave 7F

8
 

waveform viewer and an Excel spreadsheet.  The granularity and accuracy of software-timed events was 

also improved. 

                                                      
6
 Google’s C++ unit testing framework 

7
 since renamed Jenkins, a continuous integration and build server 

8
 GTKWave is a fully featured GTK+ based waveform viewer which reads Fast Simulator Trace (FST), 

interLaced eXtensible Trace (LXT), LXT2, Verilog/VHDL Zipped Trace (VZT), and GHW (format 
generated by the open source VHDL simulator GHDL) files and standard Verilog VCD/EVCD (format 

specified in IEEE-1364 and generated natively by Verilog simulators) files, and allowed their viewing. 
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To capture events during component executions, new event capture instrumentation points were inserted 

into the runtime infrastructure. As part of the protocol monitoring enhancements for testing FPGA 

components, the capability was added to capture and timestamp Input-Output (I-O) events at each of the 

component ports. To fully exploit the downstream display and analysis tools, software was developed to 

convert the event data to standard formats. These standard formats included the Value Change Dump 

(VCD) for hardware simulation viewers, and the Comma Separated Value (CSV) files formatted for 

import into the Excel and other tools. This provided additional comprehensive measurement capabilities 

for the component, the application, and the infrastructure elements. 

2.8 Applications 

Several OpenCV applications were re-implemented under OpenCPI as part of the integration effort. These 

not only demonstrated the OpenCPI suitability for such image processing applications, but also provided 

examples and test applications for other features, including processor allocation capabilities. Related to 

the application-level ease of use efforts that were previously mentioned, a load-balancing capability was 

created that allowed an application’s software components to be deployed to more or fewer processors.  

This affects the trade-off between improved performances and the sharing of limited computing resources 

within a computing system with other applications. 

Preparations were made for the implementation and porting of a Signals Intelligence (SIGINT) 

application. Several front-end components of the applications pre-existed, including the Digital Signal 

Processor (DSP) functions implemented inside the Ettus N210 platform. This work defined the 

heterogeneous OpenCPI components that would implement the same functionality 8F

9
 in FPGAs, GPPs, and 

GPUs. Several of these were implemented in software that then performed the functions of the FPGA 

versions. Before this task was completed, the SIGINT application was determined to be unavailable, and 

focus shifted to a Frequency Shift Keying (FSK) radio application, which reused a few of the components 

that were created for the SIGINT application. The second application required an additional major effort 

in VHDL support for the HDL Authoring Model. 

2.9 Community 

To build a community of users, two conference workshops were presented and conducted with OpenCPI.  

The first conference was the Wireless/Software Defined Radio (SDR) Innovation Forum on November 

30, 2010 at Arlington VA, and the other was the 19th Annual International IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM) in May 2011 at Salt Lake City, UT. Both 

conferences were well attended, and the workshops were well received. 

A community and interested-party meeting was held in January 2012, and was hosted by the MITRE 

Corporation in McLean, VA. This meeting was attended by a mixture of academic, government and 

industry representatives. Originally it was planned to also participate in the NVIDIA GPU Technology 

Conference in October 2011, but that conference was postponed by six months, and caused scheduling 

difficulties. 

Another effort to enhance the community was a major upgrade to the OpenCPI web site [2], which 

provided ease of navigation to the documentation and source code repository, and included access to the 

bug-tracking subsidiary site. 
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3.0 METHODS AND PROCEDURES 

3.1 Authoring Models for Different Processing Technologies 

OpenCPI Authoring Models (OCLs) represented different ways to write worker 9F

10
 using languages and 

APIs that allowed the effective use of a class of computing technologies.  For some models, a specific 

programming language was implied10F

11
, whereas for others 11F

12
, the model was separate from and independent 

of the actual language used. Currently there is no single model 12F

13
 that exploits all of the processing 

technologies, although the Authoring Models must coexist and interoperate. Thus, the Authoring Models 

were developed to be interchangeable in an application without having to make top-level application 

changes, and without having to make changes to other application components. 

Each model fits a pattern in which four types of interactions are defined, as shown in Figure 1. These 

interactions are the Management Interface, the Inputs, the Outputs, and the Local Services. The HDL 

Authoring Model was specifically written for FPGAs, and was written in the Verilog, the BlueSpec, the 

VHDL, and the System-C languages.  The RCC Authoring Model [9] was written for C-based nodes that 

included embedded Central Processing Units (CPUs), microcontrollers, and DSP environments. 

 

 

Figure 1. Authoring Model Pattern 

 

3.1.1 New Authoring Model for GPUs. 

A new OCL was defined and implemented for a rapidly emerging and adopted class of highly parallel 

processors that were originally developed for graphics rendering in workstations. Today GPUs are 

commonly being used for non-graphical tasks. The GPUs are called General Purpose GPUs (GPGPUs) 

                                                      
10

 a component implementation 
11

 e.g. Resource-Constrained C-language (RCC) 
12

 e.g. Hardware Description Language (HDL) 
13

 language/Application Programming Interface (API) 
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when they are used for non-graphics applications.  In this project a GPGPU Authoring Model was created 

to exploit this class of processors. 

The first challenge was to confirm that such an Authoring Model was feasible in terms of the interactions 

with the other existing OCLs.  The second challenge was to select a language and an API that was useable 

across the available GPUs.  The languages that the GPUs are programmed in, the GPU’s APIs, the GPU’s 

drivers, and the GPU’s hardware-level details are vendor-specific and proprietary.   

An abstract Authoring Model would require that each of the proprietary APIs, drivers, and hardware have 

their own specific model. Each abstract Authoring Model would then be defined and implementable by 

only one particular vendor’s set of toolkits. This would result in a situation where heterogeneous 

requirements would be difficult to implement, document, maintain, and use; and also would be non-

portable between components from different vendors. 

Apple and others in the Khronos Group13F

14
, which had standardized the Open Graphics Library (OpenGL) 

APIs, defined a new language called C subset and a common API. For the first time programmers were 

enabled to write with a single language and API, and execute the resultant code on different vendor 

GPUs. This new standard was OpenCL. When this was completed in 2009, the early implementations on 

GPUs were weak, incomplete, and did not fully exploit the computing capabilities of the GPUs. This 

situation improved during 2011, and further in 2012, so that the promise of write once and then execute 

on different GPUs is now close to reality. In general the OpenCL-based codes can move between vendors, 

although further hand tuning is usually required to achieve the best performance. Table 1 lists the vendors 

which support OpenCL on their GPUs and multi-core processors. 

 

 

 

Table 1. OpenCL Implementations
 

Vendor Hardware Link 

NVIDIA All recent NVidia GPUs www.nvidia.com/object/cuda_the Opencl_new.html 

AMD AMD GPU cores & x86 cores developer.amd.com/gpu/atistreamsdk/pages/default.aspx 

IBM IBM Cell/Power architectures www.alphaworks.ibm.com/tech/the Opencl 

Intel SSE 4.1+ http://software.intel.com/en-us/articles/intel-the Opencl-sdk/ 

 

The OpenCPI model combined the best of both, with OpenCL providing a programming methodology for 

parallel computations that are portable across different GPU and CPU architectures, and OpenCPI 

supporting the replaceable component models across the processor types. 

                                                      
14
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The key attribute of OpenCL is that it was derived as a subset/superset from International Organization 

for Standards (ISO) C9914F

15
. Recursion, function pointers, and functions in the C99 standard headers are 

not supported. The preprocessing directives defined by C99, and some additional built-in data types 

including images and vectors, are supported. Also, the geometric functions are supported that access 

elements relative to the context.  

The context of an OpenCL function is referred to as a kernel or a work item. An OpenCL application is 

performed by partitioning the processing to be done among different processors. The number of work 

items is determined by selecting dimensional indices. There is a physical limit on the maximum number 

of work items. These work items are then executed in parallel.  A typical example is that the workspace is 

an output image, and each work item is the work necessary to compute some portion15F

16
 of that image.   

OpenCL is composed of a C99-based dialect16F

17
 and the APIs for writing and executing data/task parallel 

compute kernels. OpenCL focuses on its portability by trading off its convenient usability. Our two code 

examples in Figure 2 illustrate the difference between a simple C function and the analogous OpenCL 

kernel. 

 

 

 

 

 

Figure 2. C Function vs. OpenCL Kernel 

 

These existing example OpenCL GPU kernels were reusable in OpenCPI with a simple wrapper that did 

not adversely affect performance. While OpenCL also included a host CPU API 17F

18
 for staging the OpenCL 

kernel on a GPU, the OpenCPI Component Author using the OCL did not use these APIs, but rather 

                                                      
15

 C99 is an informal name for ISO/IEC 9899:1999, a past version of the C programming language 
standard. It extended the previous version C90 with new linguistic and library features. 
16

 tile, pixels 
17

 A dialect of C that was adapted as an ANSI standard in 2000. 
18
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executed in the background by the OpenCPI infrastructure code. This was simpler to program, as the 

complexity to implement OpenCL was greater than the OCL Component Author. Additionally, OpenCPI 

maintained commonality across the heterogeneous technologies. OpenCPI thus achieved interoperability 

between the different types of components communicating with each other and portability as the same 

code executed on different GPUs/multicores. There were common development flows of the components, 

of the component-based applications, and of the control applications. There was a common description for 

the alternative implementations including FPGAs and GPUs. There was also interchangeability, as for 

example GPU processing could be substituted for with FPGA processing. 

The OCL model supports the kernel built-in functions in OpenCL for certain mathematical and 

synchronization functions, does not require or expose the OpenCL host API, and limits the required 

OpenCL knowledge. Host code is not required, as only device-side kernel functions need to be written. 

Figure 3 presents a comparison of layering of OCL vs. OpenCPI for a generic application. The OpenCPI 

container library handles all of the host functionality, including the loading of the binary code into the 

device and the allocation of memory to contain port buffers and property data. Also, the container library 

determines when to execute device-side kernel code based on state transitions and buffer availability. 

 

 

 

 

Figure 3. OpenCL vs. OpenCPI Layering 
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The container for the OCL workers acts like other containers [10]. The control application that executes, 

configures and connects the workers is generic, and not specific to the OCL. The Authoring Model is 

completely described in the OCL Model Reference document [11]. Implementing the OCL involved 

enhancing two development tools, as well as the runtime code. The existing ocpigen tool [12], which was 

responsible for the code generation in all of the Authoring Models, was augmented to do the code 

generation. This included generating custom property structures based on all of the defined property data 

types and names, as well as generating a custom worker context structure that was based on metadata. 

The worker structure included the structures for all of the defined OpenCPI ports and the requested 

memory regions.  The skeleton generation included stub functions for all of the entry points. Figure 4 

shows an OCL worker executing inside an OCL container in an OpenCPI application that also includes 

other Resource-Constrained C-language (RCC) components executing in the RCC container. 

 

3.1.2 VHDL Support for Existing HDL/FPGA Authoring Models. 

The existing Hardware Description Language (HDL) Authoring Model was well-defined by the language-

independent Open Core Protocol-International Partnership (OCP-IP), whose interface specifications 

mapped naturally to other HDLs, including Verilog, VHDL, System Verilog, Bluespec System Verilog 

(BSV), and System-C. Previously OpenCPI HDL partially supported the generation of Verilog code in 

cases when the external interface18F

19
 of a HDL worker was rendered in Verilog. 

                                                      
19

 sometimes called the black box module declaration 

Figure 4. OCL Worker in an OpenCPI Application 
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Based upon the experience and analysis of the VHDL application, it was determined that VHDL support 

in OpenCPI needed to go beyond generating external module definitions 19F

20
, but also needed to generate a 

shell that significantly simplified authoring a worker.  This was especially true when wrapping existing IP 

Blocks to execute under OpenCPI [13].  The shell significantly reduced the complexity by ensuring that 

all of the exterior interoperability interfaces met the OCP-IP defined signal requirements, and provided a 

more worker-specific and simpler internal interface.  This VHDL shell concept is described in Figure 5. 

Currently Verilog supports the creation of a module declaration for an actual deployable worker, as 

shown on the outside of the blue layer that is represented by the red and blue arrows. VHDL also 

generated code for the blue shell code, as well as the entity declaration of the authored worker that must 

be implemented. If there is existing legacy VHDL entity architecture, then it is wrapped or modified to 

properly implement the generated inner entity represented by the gold inner box.  Otherwise code is 

written to fill the gold box. 

The building scripts for writing the VHDL workers in the OpenCPI component library synthesized the 

shell and the inner worker into a deployable synthesized module. Since this type of code generation 

significantly simplifies the job of implementing an OpenCPI worker, Verilog support in OpenCPI was 

similarly enhanced.  For example, the green interfaces were much simpler than the red/blue interfaces, 

since the green interfaces were worker-specific. 

3.1.3 Enhancements of Existing RCC Authoring Model. 

An Authoring Models simplifies code writing by reducing the needed Source Lines of Code (SLOC). 

This is accomplished in two different ways.  Codes generated by tools are developed for the worker and 

for the container. Also, the descriptive metadata is separated from the programming language, which 

results in a runtime-version of the same metadata information being made available to the infrastructure’s 
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containers. This results in an implicit delegation of the code from the worker to the container.  A simple 

example of this is the RCC execution condition, where the determination of when a worker executed is 

not made in the worker with the typical blocking or timeout APIs, but rather in the container based on the 

simple run-condition data structure. 

As a result of the preparation of the test, example, and application components, three enhancements were 

implemented that reduced the RCC worker’s complexity and the SLOC. The first was for the RCC 

worker to indicate when the buffers had been consumed and produced, and that the worker had completed 

all processing. This was indicated by returning the value RCC_ADVANCE_DONE from the execute 

function of the worker. Adding this fairly simple capability allowed a typical worker to avoid maintaining 

an extra state while it was still processing data. This reduced the lines of code and the amount of 

processing required, since it eliminated a final context switch in the lifecycle of the worker. 

A second enhancement was to provide a container callback function that allowed the worker to build an 

error reporting string using a sprint-style function, where the container took responsibility for error string 

storage. This allowed simple workers that reported error conditions to avoid storage management for 

these strings, and in most cases avoided the release method entirely. 

The final enhancement was to clarify and simply the handling of dynamic execution conditions.  A 

worker could change the execute condition to the NULL execute condition, which restored the initial 

default implied execute conditions. This allowed the workers with dynamically controlled execution 

conditions to easily use the default rather than having to recreate it, which further reduced the lines of 

code. 

3.2 Data Transport Technology 

Many real embedded systems have more than one processing element. A data path between the 

processing elements is required to communicate data and messaging. The diversity of the interconnect 

technologies for this communication was a major challenge faced by OpenCPI.  

The appropriate data-plane and data transfer drivers in OpenCPI were optionally loaded when an 

application’s system targeted such hardware and drivers. The driver for a processor connection within a 

system was then deployed. Which driver was used for a particular inter-component connection was 

transparent to the component source code. 

3.2.1 OFED/Infiniband for Component Data Transport. 

In 2009 more than 40% of the Top500 systems [14] used the Optical Fabrics Enterprise Distribution 

(OFED)/Infiniband for their server and storage connectivity. The OFED is an important embedded 

application that utilizes a cluster approach with rack mounted servers. This application is connected with 

either high speed switched Infiniband or Internet Wide Area RDMA Protocol (iWARP) interconnects that 

execute at speeds of up to 40 Gb/s. The Network Interface Controllers (NICs) for the Infiniband 

implementation include remote DMA in the hardware that is maximized for performance. Also the 

application is designed to use a minimum number of processors. This project supported OpenCPI 

development for such interconnects by allowing its components to efficiently communicate between the 

processors and/or the subsystems that were connected by this class of hardware. 

The OFED enabled drivers and APIs to be selected to effectively target this class of interconnect 

hardware. This targeted application was an open source distribution of hardware-assisted RDMA 

hardware drivers and a thin software layer called Infiniband Verbs which unified support across the 

vendors.  The layering was similar to that of OpenCL, in that a thin layer was added to simplify the 

normalization behavior across the vendors without significantly adding to the overhead and abstractions. 

OpenCPI’s model of message passing between the components was mapable to this layer. 

The Linux-based, open source OFED is a broad distribution of the RDMA switch fabric, and the cluster-

related software includes layers, drivers and tools. The hardware drivers include those from Mellanox, 
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Hewlett Packard, Cisco, Intel, and Chelsio. The middle layer verbs that were targeted exploited hardware 

vendor drivers. This same layer was targeted by other middleware for parallel computing, such as the 

Message Passage Interface (MPI). 

The test environment included a software-based low-level driver Soft-RDMA over the Converged 

Enhanced Ethernet (Soft-RoCEE), which emulated a hardware-assisted Network Interface Card (NIC) 

that executed Infiniband protocols over link-layer Ethernet hardware.  The underlying driver did not 

adversely impact the OpenCPI support code, and as with other OpenCPI dataplane drivers, had no impact 

on the components’ source codes. 

The driver enabled communications between the components executing on a RedHat 64-bit system and a 

Community Enterprise Operating System20F

21
 (CentOS) 32-bit system. Since the verb header file was 

common across the vendors, the OpenCPI driver was compiled regardless of the hardware and drivers that 

were available in the system. Also, all of the versions of the OFED were compliable. 

3.2.2 Datagrams for Data Transport over Unreliable Protocols. 

The basic communication model for the OpenCPI data-plane drivers was the Remote Direct Memory 

Access (RDMA), where a process tasks the underlying API to transmit data at some offset from a local 

memory to a remote memory area that is at some other offset. The DMA interconnect fabrics included 

PCI Express and RapidIO. The RDMA APIs included the OFED/Infiniband Verbs. The underlying 

software and hardware layers guaranteed delivery of the RDMA transfers. 

Prior to this project, OpenCPI was a simple sockets-based RDMA data-plane driver which transmitted 

messages over Transmission Control Protocol (TCP)/ Internet Protocol (IP) sockets.  Although TCP/IP 

was said to guarantee delivery, this sockets-based data-plane driver issued a RDMA command descriptor 

to send the data to the TCP/IP socket, and then assumed that the delivery occurred at the other end. 

Ethernet support was developed for communications between an FPGA process and a Linux/x86 process 

for when it was infeasible to use TCP/IP.  However, this protocol was too complex to implement in most 

FPGAs, and required an unreliable datagram-based RDMA transfer protocol for OpenCPI. 

When either a TCP stack or an User Datagram Protocol (UDP)/Internet Protocol (IP) is available, the 

UDP provides datagram services. Some FPGAs also directly implemented an UDP. Regardless of the 

underlying datagram service, mapping the RDMA onto an unreliable datagram service was required. This 

protocol was defined as the DataGram (DG)/RDMA. It enabled datagram frames to carry multiple 

RDMA-write requests, and provided for frame-level acknowledgements and retransmissions. The 

RDMA-over-Converged Enhanced Ethernet (RoCEE) datagram protocol defined by the Infiniband Trade 

Association was too complex to implement in the time frame of the project.  This is a good candidate for 

future efforts since there is hardware support on x86 processors that implements it within the Mellanox 

Ethernet NICs. 
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To test the software implementation of the DG/RDMA protocol, it was first layered and mapped on top of 

the UDP/IP. This provided a wide-area-routable datagram capability when an IP stack and routing is 

available, and is a logical implementation when both sides of the inter-component.  

To test the software implementation of the DG/RDMA protocol, it was first layered and mapped on top of 

the UDP/IP. This provided a wide-area-routable datagram capability when an IP stack and routing is 

available, and is a logical implementation when both sides of the inter-component conversation are 

implemented in software. This layering over UDP was accomplished in 200 SLOC and served as an easy-

to-debug test environment for the basic software DG/RDMA implementation, which was 1000 SLOC. 

This effort not only provided a test-bed for the DG/RDMA protocol definition and software 

implementation, which was also useful as a mechanism that any inter-component connection could be 

assigned to. This protocol layering is illustrated in Figure 6. 

 

3.2.3 Ethernet Link Layer DataGram. 

To provide an OpenCPI data-plane connection for the Ettus N210 platform that was required by the FSK 

demonstration platform, a protocol was developed for Ethernet links so that the FPGA-based components 

executing on the N210 could communicate with the components executing on the host x86 machine. The 

host executed Red Hat Enterprise Linux (RHEL) 5. Since the use of minimum resources was within the 

spirit of SWAP, this was implemented on a Xilinx Spartan 3A-DSP-3400 FPGA on the N210 platform.  

The DG/RDMA protocol was directly implemented over the link-layer Ethernet rather than over the 

UDP/IP, since this required fewer FPGA resources, would result in a lower latency, and would possibly 

have higher throughput. 
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This required an alternative software mapping from the DataGram (DG)/RDMA directly onto the link 

layer Ethernet, and this entirely bypassed the IP stack. This alternative mapping of the DG/RDMA 

protocol to the Ethernet in software was approximately 200 SLOC, and also required either executing all 

of the OpenCPI software in the Sudo21F

22
 mode with root privileges, or using the OpenCPI Linux kernel 

driver. The OpenCPI Linux kernel driver was enhanced to provide a privileged path directly to the 

Ethernet to avoid the privilege requirement. This completed the software aspects of using the DG/RDMA 

protocol over the Ethernet link layer, and either UDP/IP or direct Ethernet could be used to transport the 

DG/RDMA datagrams to support datagram-based RDMA between the OpenCPI components.  In Figure 7 

is a diagram of an Ethernet link layer, which was an alternative to UDP/IP. 

After the software driver and mapping were tested between two computers on an Ethernet link, the 

DG/RDMA protocol was implemented in FPGA code to execute on the Ettus N210 FPGA.  While an 

UDP/IP implementation was also possible on the FPGA, this was not needed here since the Ettus N210 

included an attached front end. 

3.2.4 DDS for External Connections of Component Ports. 

Although OpenCPI provided an environment where component applications spans a heterogeneous set of 

processors connected by a heterogeneous set of interconnect structures, there are important cases where 

components will need to communicate outside this environment rather than to just other components 

inside that environment. In OpenCPI, an application’s component ports are connected to the external 

services. This is illustrated by comparing one application that has internal connections between its 

components with another application that publishes data through an external connection into a separate 
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 Sudo is a program for Unix-like computer operating systems that allows users to run programs with the 
security privileges of another user. 
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middleware regime. In OpenCPI, external connections are achieved via API or XML by providing a 

Universal Resource Locator (URL) for the external connection. This indicates that a particular component 

port in the application should be connected to the communication service indicated by the URL. 

The Data Distribution Service (DDS) is an industry standard from the Object Management Group 

(OMG), the same organization that standardized the CORBA and the Unified Modeling Language 

(UML). DDS provides efficient local and/or wide area publish/subscribe messaging with control over the 

quality of service and the data refresh rate.  Since it is used in several DoD applications, it was a natural 

choice for the first supported external connection service for OpenCPI. It is especially useful for 

dissemination to many users/subscribers when multicast communication patterns are preferred. It also 

allows the applications using it to be written in multiple languages. 

This project implemented both the external connect capability and the DDS external connection 

capability. DDS support was implemented so that a component’s output could be a DDS publisher that 

disseminates to external DDS-based subscriber applications without changing either the component 

source code or the compiled code. Also, a component’s input can be a DDS subscriber that receives input 

from an external DDS-based publisher application without changing the component source code or the 

compiled code. DDS can also be used for transport inside a distributed OpenCPI application, especially 

for distributed fan-out/multicast configurations. This is another transport way for the components to 

communicate with each other. 

A major challenge in implementing support for external DDS connections was the data interoperability 

between the OpenCPI messages and DDS. DDS applications publish/subscribe to topics which have 

CORBA IDL defined data types/structures. The OpenCPI component and connected external DDS 

applications must have a common data definition. Two tools were created to interconvert the data type 

metadata between OpenCPI and DDS.  Since both OpenCPI and DDS used the basic data type 

abstractions of IDL as are used in CORBA, this was possible. This allowed the external DDS connection 

driver to efficiently interconvert the data message formats at runtime.  In many cases a conversion was 

not required. However, if required, the two interconverting tools used are illustrated in Figure 11. 

Combining these two tools enabled the creation of an OpenCPI component to interoperate with an 

existing DDS application, and a DDS application to interoperate with an existing OpenCPI component. 
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The DDS developments used the open source community licensed version of PrismTech’s OpenSplice 

DDS [15]. This implementation approach for the OpenCPI DDS external connection driver, as shown in 

Figure 8, avoided requiring the generation of metadata-based code to make connections. The conversion 

was made in the data path and not with the application level bridging/conversion code, and the amount of 

the wire protocol code required was reduced from that originally generated by OpenSplice. The URL 

format for external connections to DDS was developed for this project, since this standard did not 

previously existed. 

3.2.5 CORBA for External Connections of Component Ports. 

Implementing a generic CORBA interoperation solution was not an original goal of this effort. During the 

course of the project it was realized that a key building block for the Software Communications 

Architecture (SCA) integration experiment was a simple external connection driver for CORBA which 

used the standard corbaloc URLs for CORBA entities in the environment.  This also provided a second 

use case of external connections. 

To stay within the scope of the project and the SCA integration experiment, the interoperation for 

CORBA one-way operations was supported using the OpenCPI RDMA transport drivers. The more 

general-purpose CORBA Object Request Broker (ORB) transport drivers were not supported. 

3.3 Platform Adaptation and Enablement 

To use the runtime aspects of OpenCPI on a processing platform, the runtime software modules must 

support the processors and the processor interconnects. The processor runtime modules were called the 

containers, and the interconnect runtime modules were called the dataplane drivers.  The containers were 

a combination of software proxies executing with the central core of the application and the actual 

runtime environment that directly executed the components on the processor.  Furthermore, the OpenCPI 

control plane, which controlled the components, was configured from a central point of the application 

management. This sometimes required its own type of interconnect support, which was different from the 

dataplane support. The dataplane support conveyed the messages between the components. 

Initially this project had one platform initiative, which was to enable a FPGA processing platform, and 

was based on the Altera FPGAs in addition to the preexisting support for Xilinx FPGAs.  An application 

trade study introduced a new platform requirement, the Ettus N210.  
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3.3.1 Altera FPGAs and Altera Stratix4 Development Platforms. 

The goals were to enable the OpenCPI HDL infrastructure that had been previously developed for 

OpenCPI Xilinx FPGAs to be transparently usable for Altera FPGAs.  It was necessary to ensure that an 

application software and the HDL code were not unaware of which type of FPGAs was used, and also 

that a build flow worked on either of these vendor’s tool sets. Also, it was anticipated that other vendors 

and tool sets would be added in the future. Runtime interoperability between the Xilinx and Altera 

FPGAs was also developed, implemented and demonstrated. 

The two fundamental subtasks were the on-chip infrastructure and tool-build flow. The development of 

hese two subtasks proceeded in parallel.  In Figure 9 is a description of the OpenCPI HDL build flow that 

was implemented for the Altera FPGAs.  Any piece of the HDL code, except for the topmost hardware 

dependent layers, could be built for both the Xilinx and the Altera FPGAs using the same scripts. Most 

primitives, workers and application subassemblies could also be built for either family of FPGAs. The full 

chip files could then be built by targeting a full FPGA platform identifier. Here the Altera Stratix IV 

development board utilizing PCI Express was selected for experimentation and development. 

 

 

Figure 9. OpenCPI HDL Build Flow 

 

The tooling effort, which was developed in parallel with the hardware-specific efforts, implemented the 

scripted build flows to create a bitstream chip file. Similar to the existing Xilinx support, the build flow 

took as its input the specifications to build the chip. The first specification was the target platform, which 

was a specific FPGA part on a specific board. Also, the application consisted of a connected set of 

workers, and the container indicated how the application was connected to the infrastructure on the chip. 
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While this seemed simple, the vendor’s scriptable command line tools each operated completely 

differently. Furthermore, the command line scripting was considered by the vendors to be a secondary 

usage model in preference to the Graphical User Interface (GUI)-centric modes. The resulting scripts 

masked the vendor differences. 

The platform IP was pre-synthesized with a single undefined reference to the application. The part’s 

application IP was pre-synthesized as a connected collection of workers. Then the two synthesized 

modules 2 2F

23
 were combined with a container, in a place-and-route step that created the chip level bitstream 

configuration file.  Finally, the metadata was embedded in the bitstream file that notified the runtime 

library search mechanism of which workers and what connections were implemented in the bitstream. 

There were two major challenges for the Altera platform hardware support work in creating the OpenCPI 

device-dependent infrastructure, which were the attachments to the Peripheral Component Interconnect 

(PCI) Express fabric and to the Dynamic Random-Access Memory (DRAM).  In both cases the primary 

Altera usage mode was to connect these devices to Altera’s own proprietary on-chip infrastructure. There 

was no example source code for using these devices standalone. Although there was documentation for 

the standalone usage, that documentation was not accurate. 

A third-party hardware board, the HiTech Global PCI Express card with a Stratix 4 FPGA, was also 

investigated, but the documentation for this was not sufficient, and additional efforts would have been 

needed to complete this. This proved to be beyond the scope of this effort, and so was not pursued. 

Additional effort then went into the investigation of a better-supported Altera development board. 

The OpenCPI on-chip infrastructure is depicted in Figure 10. Only the Chip Specific Platform Logic 

required changes for the Altera platform highlighted.  The PCI Express, the DRAM in the Device 

Workers Configured As-required and the Passive Parallel Synchronous (PPS) Time Base were relevant to 

this effort.  Other aspects of the Altera code did not require changes, which confirmed the code’s inherent 

portability. 
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Figure 10. OpenCPI FPGA On-chip Infrastructure 
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Figure 11. Altera/Xilinx Interoperability Demonstration 

The final demonstration of this Altera platform and the tool effort was to confirm that in the same system 

the Altera and the Xilinx boards both interacted directly with each other over PCI Express.  This 

demonstration’s configuration is shown in Figure 11. This demonstration showed that the infrastructure 

was working on both boards, and that the software drives 23F

24
 controlled both boards. The DMA and the PCI 

fabrics were completely interoperable when data was streamed peer-to-peer over PCI Express.  Also, the 

DMA operated both to and from the system memory, and peer-to-peer when bypassing the system 

memory. 

3.3.2  Ettus N210 Platform. 

The transition-application study phase was developed and demonstrated on the platform that was the 

baseline platform for the Ettus Research N210 Universal Software Radio Peripheral application. This 

application was essentially a radio front end that consisted of a Radio Frequency (RF) tuner/exciter, an 

Analog-to-Digital Converter (ADC)/Digital-to-Analog Converter (DAC), a FPGA, and Ethernet 

connections to the system where the software aspects of a radio application were executed on.  Since the 

original application did not utilize a DAC, this part of the platform was later de-emphasized.  The Ettus 

block diagram for this device is shown in Reference [16]. 

The key platform aspects that supported the OpenCPI development were the FPGA tasks and the software 

tasks. The FPGA tasks primarily supported the Ethernet interface in the OpenCPI FPGA infrastructure, 

the Ethernet itself, and the OpenCPI control plane over the Ethernet. Also, the OpenCPI data plane over 

the Ethernet was supported, as well as the ADC device attached to the Spartan FPGA. Additionally, the 

basis and the small Spartan 3A Xilinx FPGA were supported. 
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 with no changes for the Altera board 
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Since this FPGA platform was smaller and more resource-constrained than the previous OpenCPI FPGA 

platforms, particular attention to the leanness was necessary for all these tasks.  This platform was open 

source hardware, and the technical data and vendor FPGA codes were available for development. 

The ADC support leveraged the results of previous ADC efforts on other proprietary platforms. Here 

though this platform was somewhat different in that the N210 ADC was designed as a quadrature ADC 

with two ADC channels bonded to provide both In-phase (I) and Quadrature (Q) complex data. 

Software support for the control plane and the data plane was added for the raw over link-layered 

Ethernet. For the existing OpenCPI platforms, this was implemented with PCI Express. Other than the 

dataplane driver for the datagram-based data-plane support, the major software development involved the 

discovery and control of the Ethernet-based FPGAs. The associated OpenCPI Linux device driver 

enhancements enabled raw Ethernet access to the Linux processes controlling the FPGAs via an Ethernet. 

Device driver development was required to allow the user processors to access the raw Ethernet, which 

would normally be privileged. Also, it allowed the incoming packets to be processed by the controlled 

FPGA, which would normally be controlled by higher level protocols such as UDP/IP. 

When this work was completed, OpenCPI was able to discover multiple FPGAs attached on a 

combination of PCI Express and Ethernet in the same system. All platform support was successfully 

completed, other than the FPGA side of the Ethernet-based data plane, which required some additional 

effort. 

3.4 Integration and Coexistence with Other Frameworks 

Real applications sometimes need to combine the aspects of multiple frameworks to obtain all the 

required functionality.  This is especially common when a domain-specific code is available from a 

framework that does not supply all of the necessary functionality.  This project performed two 

experiments in integrating other frameworks with OpenCPI, both specific to a particular domain. While 

OpenCPI is certainly not domain-specific, it is focused on embedded systems, with application 

functionality distributed across heterogeneous processing resources within that system. 

3.4.1 Coexistence of OpenCPI with OpenCV. 

The Open Source Computer Vision Library (OpenCV) is a library that includes hundreds of computer 

vision algorithms that are written in C++.  This large repertoire of computer vision and image processing 

algorithms is a valuable resource for building computer vision and other image processing applications. 

Originally it seemed that wrapping OpenCV algorithms as OpenCPI components could be combined with 

other OpenCPI components, and then other technologies could be replace on a component-by-component 

basis.  However, OpenCV algorithms were not created in a component model. Since OpenCV frequently 

used polymorphic data typing, where code was present to process and to interconvert multiple data types, 

three integration scenarios were followed. The first scenario was to port code in OpenCV algorithms to 

form new OpenCPI components. The second scenario was to combine OpenCV algorithms, and in 

particular image I-Os and format conversions, with the OpenCPI components in the same application. 

Finally, several applications were created that combined the OpenCV library with the OpenCPI 

framework. 

This resulted in twelve new OpenCPI components [17] with software RCC implementations that were 

added to the OpenCPI component library, and three new applications that were added to the OpenCPI 

repository of example applications. This work was done in conjunction with a sponsored graduate student 

at the MIT Laboratory for Computer Science [7]. 

The algorithms ported from the OpenCV library into the OpenCPI component library were Sobel, 

Sobel_32f, Canny, Blur, Erode, Dilate, Gaussian_Blur, Optical_Flow, Scharr, Good_features_to_track, 

Min_eigen and Corner_eigen. These components were combined into three application examples that 

directly used the OpenCV library for image conversion and I-O reading from files and displaying in 
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windows, and used the newly created OpenCPI components for image processing.  The Canny Edge 

Detection application (Figure 12), the Feature Detection application (Figure 13) and the Optical Flow 

application (Figure 14) are shown in the following three diagrams, including which components that were 

used in each of the applications, and how they were connected.  

This process proved to be a good demonstration of the OpenCPI framework, and resulted in several 

enhancements and bug fixing to OpenCPI.  In particular, the optical flow application was used to stress 

the multiprocessing/multi-core execution of OpenCPI.  

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 

 
OpenCPI “Control Application” Using OpenCV Library 

 
 

 
 

 
 

 

OpenCPI RCC Container 

Display!
 

Good(
Features 

To Track 

Image 

Data 

Corner 

Eigen 

Worker 

Min 

Eigen 

Worker!

OpenCV 

File 

Reader 

OpenCV 

Image 

Display 

Control Application Connection between OpenCV and OpenCPI Container/Workers 

Connections inside the OpenCPI Container (zero copy) 

OpenCV Internal I/O 

OpenCPI 

Worker 

OpenCV 

Library 

Function 
 

 

Figure 12. Canny Edge Detection Application 
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Figure 14. Optical Flow Application 
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3.4.2 OpenCPI with SCA. 

Software Communications Architecture (SCA) is a DoD-developed 24F

25
 framework for developing and 

deploying software defined radio applications. It is a component-oriented framework for software-based 

components based on using the CORBA for communications, and the Portable Operating System 

Interface25F

26
 (POSIX) for operating system and runtime library services. It was designed for the software 

radio domain, which are typically deployed in embedded radio systems. 

Prior to becoming open source software, OpenCPI was used inside of and was dependent on an SCA 

environment. During the open sourcing process this link was eliminated, which resulted in the OpenCPI 

version being independent of the SCA. Also, the SCA had technical attributes that were rejected as 

inappropriate26F

27
 for most embedded systems. This project took a new approach to this integration, and 

investigated whether OpenCPI could be efficiently layered underneath an existing SCA environment 

without the specific application giving up its inherent efficiency. 

A SCA framework was selected that was open source and depended upon the open source CORBA 

middleware. The selected SCA framework was Open source Software Communication Architecture 

Implementation: Embedded (OSSIE) framework [18] from Virginia Tech, which was dependent on the 

open source omniORB CORBA layer 27F

28
.  Virginia Tech was a subcontractor that participated with this 

integration. 

In the chosen integration approach OpenCPI did not replace the SCA core framework, which was the 

management and control center of the SCA environment. However, the key integration elements that were 

implemented were a SCA Core Framework (CF) ExecutableDevice28F

29
 object for each of the implemented 

OpenCPI containers, and a resource object that was an efficient control proxy for each worker. The 

relationships of these elements are shown in Figure 15. 

The integration of OpenCPI was controlled by and represented to the SCA control system.  The OpenCPI 

containers appeared as SCA executable devices, and the OpenCPI workers appeared as SCA resources, 

regardless of whether these containers were executing on a FPGA, a GPU or a GPP. 

Another important aspect of the SCA/OpenCPI integration was the data plane over which the components 

communicated with each other.  In the SCA the CORBA middleware was used for this.  If two OpenCPI 

workers were communicating with each other under the SCA control framework, these workers 

communicated directly and efficiently with each other without using CORBA middleware.  However, 

under an SCA framework with OpenCPI, when an OpenCPI worker communicates with a normal SCA 

component, this additional middleware was necessary. 
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 It is mandated for some programs. 
26

 A family of standards specified by the IEEE for maintaining compatibility between operating systems. 
POSIX defines the application programming interface (API), along with command line shells and utility 
interfaces, for software compatibility with variants of Unix and other operating systems. 
27

 e.g. CORBA 
28

 a robust high performance CORBA ORB for C++ and Python 
29

 Framework of operations for executing/terminating processes/threads on a device. 
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Figure 15. SCA Layered on OpenCPI 

 

In the approach represented in Figure 16 the efficiencies 29F

30
 of the OpenCPI data plane were not affected in 

the OpenCPI environment and an adaptation from the OpenCPI dataplane to the CORBA middleware 

layer was only needed when the CORBA-based SCA component was executing. This adaptation was 

accomplished by writing a special transport plug-in for the omniORB 30F

31
 CORBA middleware which, when 

the SCA component was communicating with an OpenCPI worker, achieved this using the lower level 

drivers of the OpenCPI dataplane. The CORBA protocol General Inter-ORB Protocol (GIOP) headers 

were synthesized at the receiving end.   

 

Figure 16. Data Plane Adaptation in SCA Environments 
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 e.g. zero copy and DMA 
31

 omniORB is a CORBA object request broker for C++ and Python. 
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Figure 17. SCA - OpenCPI Metadata Generation 

 

An example of the data plane interoperability solution was where an FPGA worker produces a simple 

First In/First Out (FIFO) message burst at its data port that was not aware of what it is communicating 

with, and the receiving SCA component received a CORBA method invocation at its data port. This ORB 

transport plug-in approach had the additional benefit that the CORBA communications in the system 

necessitated these drivers even when both sides of the communications were CORBA middleware 

objects31F

32
. 

The tools and the metadata must also be considered when integrating OpenCPI with the SCA.  The XML-

based metadata described the components, and this metadata was required in both the development and 

the runtime environments. When implementing the OpenCPI components to serve as embedded work-a-

likes to existing CORBA-based SCA components, the ocpisca tool [19] is used to create the OpenCPI 

component metadata XML files OCS, and the OWD files from the analogous SCA files SPD, SCD, and 

IDL.  This tool flow is shown in Figure 17. 

The opposite direction can be similarly and more easily automated using existing OpenCPI components 

in an SCA environment by generating the SCA metadata from the OpenCPI metadata.  Due to time 

constraints, this latter automation was not completed in this project, but is straightforward since the 

OpenCPI metadata is essentially a proper subset of the SCA metadata. 

The limitations of this SCA integration approach were that the data port Interface Description Language 

(IDL) was restricted to the embedded subset as defined by the Object Management Group/International 

Organization for Standardizations (OMG/ISOs) CORBA/E micro profile. The control ports were SCA 

standard, but a full control and data proxy was required for further customizations. When two components 

were hard-wired to each other, OpenCPI pre-connected implementations required a patch to the core 

framework. Previously the Harris and Software Communications Architecture Reference Implementation 
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 e.g., when there are multiple GPPs on a fabric like PCI Express. 
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(SCARI) Core Framework (CF), OIS Company, The ACE Orb (TAO), and VxWork’s Real Time 

Operating System (RTOS) had been addressed. In this effort the open source Software Communication 

Architecture Implementation Embedded (OSSIE) CF, omniORB, and Linux were addressed. 

3.5 Ease of Use Improvements 

A number of efforts were made here to simplify the process of developing, configuring and executing 

applications using OpenCPI.  Most of this is related to configuring an application to execute in a 

heterogeneous processor environment. 

3.5.1 Component Libraries in the Search Path. 

To execute a logical OpenCPI application component it must be determined on which processor among 

the available processors the application will be executed on. Also, it must be determined as to which 

implementation, among available alternatives, should be used. When this project started, these decisions 

were embodied in a top level main program called the Control Application, in which the APIs specified 

for each component which binary file was to be executed, and which processor container it would execute 

on. Thus the application code explicitly and directly specified these two decisions.  This was simple at the 

API level, but when an application was executed in different configurations that used different component 

implementations, the Control Application was required to implement all the configuration alternatives in 

an ad-hoc code. 

The first effort to simplify this process was to have an implicit implementation selection using the very 

common technique of a library search path.  Search paths for executables and libraries are common in 

many systems including Microsoft Windows, Linux and MacOS. The two environment variables that are 

typically used are the path variable that indicates the locations of the executables and scripts, and the 

library variables that indicate the possible locations of the dynamically loaded libraries. 

Here these same techniques were developed for OpenCPI. The OCPI_LIBRARY_PATH environment 

variable indicated an ordered sequence of directories that searched for the components’ implementation 

binaries. This allowed the simplification of the component names, so that these directories were searched 

for binary files that contained component implementations. The files found were then dynamically loaded 

on the appropriate processor. 

The knowledge of what components were implemented in each file, and what type of processor each 

would execute on, was embedded in the binary files during the OpenCPI build process.  These component 

library directories were heterogeneous libraries that contained binary files for the different types of 

processors that included FPGAs, GPUs, different GPPs, and different Operating Systems (OSs).  As with 

any library search path, a library can shadow other libraries by being earlier in the path. For example, a 

library full of FPGA implementations might represent some accelerated versions of a more general-

purpose software-only library containing default software implementations of some of the components. 

While component binaries represented one component implementation for one type of processor, the 

component binaries actually contained multiple implementations for the same or different components. 

These binaries were each written for a specific processor and that processor’s OS.  Finally, a library 

directory in the search path was recursively searched for the component binaries, so that an ad hoc 

directory structure containing files and directories was a library. 

The search process was optimized by caching the metadata in all of the component binary files that were 

found in the path, so that a search for each component in the application could be rapidly completed. The 

directories were only scanned once at the program startup. Further optimizations were possible to save 

cache in the file system, which avoided directory searches during each program’s execution. 

In a Linux shell, the following line of code set the component library search path: 

export OCPI_LIBRARY_PATH=/home/me/fpga-impls:/syst/software-impls . 
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3.5.2 XML Applications without C
++ 

Coding. 

The existing OpenCPI application control interface was a C
++

 API that specifically created and managed 

the containers, applications and workers. Additionally, it connected and configured the workers. In the 

main program the API programmatically constructed the application in the C
++

 control application.  This 

resulted in a control-application/main-program of several hundred lines of code. A newer, simpler, more 

compacted and less error-prone XML-based description of applications was developed, and was a 

significant ease-of-use enhancement. 

The XML application format consisted of a top-level application element, with instance and connection 

child elements.  A copy application consisting of file reading and file writing workers is: 

<application> 

 <instance worker='file_read'> 

  <property name='filename' value='hello.file'/> 

  <property name='messageSize' value='4'/> 

 </instance> 

 <instance worker='file_write'> 

  <property name='filename' value='out.file'/> 

 </instance> 

 <connection> 

  <port instance='file_read' name='out'/> 

  <port instance='file_write' name='in'/> 

 </connection> 

</application>    . 

 

This example had two workers, the file_read and the file_write, with the out-port of the file_read 

connected to the in-port of the file_write.  The filename property of the file_read worker was initialized to 

the hello.file, and the filename property of the file_write worker was initialized to the out.file. 

The more advanced features included a transport attribute of the connection element that indicated which 

dataplane transport mechanism that was needed for the connection (OFED, TCP-IP, datagram-UDP, etc.). 

The done attribute of an application element indicated which of the workers would acknowledge when the 

application was completed. The external child element under the connection elements indicated if there 

was an external, and not a worker port, aspect to the connection. A value file attribute of the property 

element contained the name of the file that contained the textual initial value for the property. The value 

attribute contained the textual value itself. 

This XML application was used as a part of the new API and the new utility program.  This new API was 

added to allow a C
++

 control application to create an Application object from an XML string. This was a 

C
++

 constructor for a new Application class.  After construction, this new class included the initialize, 

start and wait operations.  An example of a main program using this new XML-based C
++

 API was: 
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int main(int argc, char **argv) { 

 std::string 

  hello("<application>" 

    "  <instance worker='file_read'>" 

    "    <property name='filename' value='hello.file'/>"  

   "  </instance>" 

    "  <instance worker='file_write'>" 

    "    <property name='filename' value='out.file'/>" 

    "  </instance>" 

    "  <connection>" 

    "    <port instance='file_read' name='out'/>" 

    "    <port instance='file_write' name='in'/>" 

    "  </connection>" 

    "</application>"); 

 OCPI::API::Application app(hello); 

 app.initialize();  // obtain all resources 

 app.start();       // start execution 

 app.wait();        // wait for workers to be finished 

 return 0; 

} 

This C
++

 API allowed the program to construct and manipulate the XML prior to execution. 

The other way that this new XML application was used was by putting the XML into a file, and using a 

new utility program called ocpirun to execute it. When the above XML was in the file copy.xml, this shell 

command executed: 

 ocpirun copy.xml . 

This utility program included the two options listed in Table 2. 

 

 

 

 

 

Table 2. Utility Program Options 

Option Description 

-d Dump all properties of all workers after execution 

-v Be verbose, describing the progress of execution 
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The combination of the XML form of application description, the C
++

 API for launching and controlling 

such applications, and the utility program for executing them provided a simpler way for applications to 

be constructed and executed.  It is expected that this method will be the preferred one for future OpenCPI 

applications. 

3.5.3 Scoring Preferred Implementations. 

A specific capability for choosing the best component implementation was also developed.  Building on 

the previous enhancement of searched and cached component libraries, the application specified an 

optional implementation scoring selection expression for each of the application’s components.  The 

purpose of this expression was to specify the optimal choice among the alternative implementations when 

more than one implementation was available. This capability also provided a way to specify the minimum 

conditions for an acceptable implementation choice. 

The expression was a normal expression in the syntax of the C language, with all the normal operators.  

Logical expression a == 1 returned 1 on true, and 0 when false.  The variables in the expression were 

either component property values that had fixed implementation values, or special built-in identifiers that 

indicated well-known implementation attributes. The special identifiers are listed in Table 3. 

 

Table 3. Special Identifiers 

Identifier Purpose Example 

Model Implementation Authoring Model name rcc 

Platform Platform the implementation is built for x86_64 or ml605 

OS Operating system that the implementation is built for Linux 

 

The value of the expression was considered an unsigned number, where a higher number was preferred to 

a lower number, and zero was considered unacceptable. If the expression for an implementation had a 

zero value, that implementation was not considered acceptable. A simple example is: 

model==’’rcc’’ . 

This indicates that the model was rcc, since otherwise the expression’s value would have been zero.  The 

example of 

error_rate > 5 ? 2 : 1 

indicated that the error rate property is relevant. If the error rate property is greater than 5, it is better than 

if it were less than or equal to 5. However, a positive integer of equal to or less than 5 is still acceptable. 

If there was no selection expression, then the score of the implementation would be 1. 

Using the OpenCPI application control API, the implementation scoring expression is provided as the 

selection parameter in the createWorker API. In the XML application specification that is described in 

detail below, the selection expression is provided as the optional selection attribute of each component 

instance.  This application code 

<application> 

  <instance worker=‘‘psd" selection="latency < 5"/> 

  <instance worker=‘‘demod" selection="model=='rcc'"/> 
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indicated that the psd worker required an implementation with latency > 5, and the demod instance 

required an implementation with an Authoring Model of rcc. The implementation selection and scoring 

features simplified the application’s preferences and requirements for each of its component. 

3.5.4 Property Values for Complex Data Types. 

The initial property values in the XML application forms were in a textual representation. While this was 

trivial for the simple scalar values and strings, it was not available in OpenCPI for the advanced data 

types such as multidimensional arrays, arrays of structures, etc. The initial OpenCPI capabilities for the 

property data types were limited to those available in the SCA standard. While this ensured some cross-

framework compatibility, it also limited the number of the important use-cases. The enhancement 

developed here provided an expansion of the possible property data types and the textual representations 

in both XMLs and in APIs. 

The data type enhancements expanded the property data types to the full data structure capabilities of the 

Interactive Data Language (IDL) originally developed for CORBA and used for DDS.  This data typing 

system expanded beyond the simpler SCA standard.  Examples of new added data types for component 

properties included fixed size arrays, multidimensional arrays, arrays & sequences of structures, recursive 

arrays, sequences and structures. These were set either directly in the XML value attribute of a property 

element, placed in a file using the valuefile attribute of a property element, or were a C
++

 application 

utilizing the setProperty method of the Application class. 

3.5.5 Automating Worker Deployment. 

A new capability was developed, implemented and demonstrated that automatically changed the number 

of processors for an application by applying specific processor allocation policies. The original default 

policy implemented a first fit algorithm that determined which container a worker would be executed on. 

This algorithm was guided and constrained by the selection and scoring mechanism that was described 

earlier. To achieve the ability to automatically change the number of processors that were to be 

implemented, three policies were followed. Each worker was assigned to a container/processor/core in a 

round robin fashion. A minimum number of containers were used, which increased the collocation. A 

fixed maximum number of processors were employed in a round robin fashion. 

The new default policy was to first use all of the available containers, and to spread the workers across the 

containers in a round-robin allocation. Software-based containers [10] originally used one CPU core, but 

multi-core processors allow the possibility of one container on each processor. 

To support a bounded number of processors for the application the maxProcessors policy was 

implemented, which indicated by setting the maxProcessors attribute in the application XML to the 

number desired. For example, to set the maximum number of processors to 3, this code was developed: 

 <application maxProcessors="3"> . 

Similarly, the minProcessors policy reused containers when possible, using the minimum number to 

execute the application using minimal resources. 

3.6 Testing Capabilities 

A number of efforts were undertaken to mature OpenCPI by improving the core infrastructure test 

capabilities. This was extended to include the application and component developments. 

3.6.1 Unit Test Framework for Infrastructure Code. 

Although there were a number of ad-hoc tests for aspects of the OpenCPI infrastructure, a standard 

harness was necessary for creating and executing the unit tests of the infrastructure code.  A number of 

open-course unit test frameworks were tested for C
++

, and the most appropriate candidate was selected. 
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That test framework was incorporated as a unit test framework, and a number of existing tests were 

migrated and ported into it. 

The motivation for selecting a unit test framework was to improve and enforce the consistency of test 

development, how the defects were reported, and how the tests were executed.  Also, it was desired that 

there was a reduction in the complexity required to write the tests, which would then encourage more tests 

to be developed. Candidates needed to be open source software with licenses compatible with OpenCPI, 

and needed to support C
++

 software development language with exception handling. Also, the candidates 

needed to be highly portable with minimum environment, OS and other package dependencies.  Finally, 

these open source candidates needed to be actively maintained. 

Based on these criteria, the frameworks Boost.Test, CppUnit, CppUnitLite, Google Test (gtest), Unit
++

, 

NanoCppUnit, and CxxTest were evaluated, and the results are summarized in Table 4. 

Table 4.  Unit Test Framework Evaluations 

 Frameworks 

 Boost.Test CppUnit CppUnitLite GoogleTest NanoCppUnit Unit
++

 CxxTest 

License Okay Good Good Okay Good Good Good 

New tests Good Bad Good Good Good Bad Good 

Fixture Okay Okay Bad Good Good Okay Good 

Suite Okay Okay Bad Okay Okay Okay Okay 

Exception Good Okay Bad Good Bad Okay Good 

Assert Good Okay Okay Good Okay Okay Okay 

Reporting Bad Good Okay Good Bad Bad Okay 

Portability Bad Okay Good Good Bad Okay Okay 

Activity Okay Okay Bad Good Bad Bad Bad 
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From the results presented in Table 4, the GoogleTest (gtest) was determined to be the best alternative, as 

it was actively maintained and the test creation was easy and compact. Also, it had good error and 

exception reporting. The gtest measured the time to execute a test case and reported it, which allowed the 

determination of execution timings.  Continuous Integration Server for Frequent Builds. 

To facilitate a community of developers and users, a continuous integration server was selected and 

configured to build and test OpenCPI (Figure 18).  This server executed the building and testing on 

several system configurations, and made results available on a web-based dashboard that included the 

status of OpenCPI. Having such a status dashboard abetted the determination of which versions of code 

were stable on which platforms, and provided an archive of which systems had previously been built and 

tested. 

 

Back
plan
e 

The Cloud/ 
Internet 

 

 

 

 
 

Component/ 
Application 

Developers 

Core/ 
Infrastructure 

maintainers 

Platform 
variant 

developers 

Tire Kickers, 
experiments, 

potential users 

System/ 
Project 

integrators 

Use public test 
resources to ensure 
wide portability, 
performance metrics 

Use public test 
resources to ensure 
reliable evolution and 
enhancements A clear, dynamic, and 

complete view of 
technology and platform 

stability and support 

Ensure that your 
platforms get tested and 
measured by all available 
apps and tests, as core 
and apps evolve 

Low effort continuous 
testing for custom 
configurations and 
platforms 

OpenCPI 
DashBoard 

System 

 

Figure 18. Continuous Build/Test Dashboard Users 

 

There were no unexpected browser requirements for the viewing and the configuration of this dashboard. 

The building and the testing can be on different systems. Community members can contribute hardware 

for performing the builds and the tests. Very heterogeneous system testing was enabled, which included 

mixing different technologies, different configurations, multiple platforms, and proprietary-custom 

technologies with multiple platform configurations. Software/component/applications were sometimes 

tested on systems that were not owned by the tester, and to which the tester did not necessarily have 

access to.  

The Hudson system is an open source continuous integration tool written in Java.  Since renamed the 

Jenkins system [8], the Hudson system met the required criteria, was portable in that it was written in 

Java, and included within it the concept of multidimensional configuration matrix builds and distributed 

build slaves. This meant that it automated the traversal of a configuration matrix to build many systems 

and configurations, and determined the build slave system, which could be located anywhere on the 

internet. It could also build for any given configuration.   
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In Figure 19 is presented a screenshot of the web page for viewing a configuration matrix job, in which 

the individual circles turn red or green as the builds and tests are successfully or unsuccessfully 

accomplished. Several slave systems are shown from which combinations of systems can be built. 

 

 

Figure 19. Continuous Build/Test Dashboard Configuration 

 

One key feature of Jenkins that facilitated a community was that the users could make available a 

particular system configuration as a building and testing slaves at specific times, i.e. between 2 AM and 4 

AM. This resulted in their configurations being available for testing by others when they were not using 

them. 
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3.6.2 Unit Test Capabilities for Heterogeneous Components. 

As part of the trade study to port the components of the Frequency Shift Keying (FSK) application, it was 

determined that this process would be accelerated if a common unit test capability was available for 

components. This resulted in a component tool and method components being developed and included in 

the unit testing component library. 

The unitTest utility program created and executed the OpenCPI applications that served as each 

component’s test bench mark. It supported components that were typical signal processing components 

that had single-input-single-output topologies. Test data was sent to the components, and the output to a 

known good output data set was compared. The new output was compared with the variance-from-

known-good-output. 

The options provided by this heterogeneous unit test utility included which Authoring Model was to be 

tested32F

33
, what the numerical acceptance threshold was, and what other property values to apply to the 

worker that was being tested. This method tested different implementations of the same component. 

The OpenCPI component libraries contained the specification file labeled with an extension .OWD in a 

common subdirectory directory, and then each component implementation would be placed into its own 

subdirectory named <component-name>.<authoring-model>.  For example, the RCC 33F

34
 model of the 

framegate component was placed in a subdirectory named framegate.rcc, and the OpenCL (OCL)-based 

GPU model was in a subdirectory named framegate.ocl.  Since the unit test for each component was 

heterogeneous, it was located in a subdirectory named framegate.test. For most components, the only 

contents in the “<component>.test directory would be the scripts to execute the unitTest utility with the 

appropriate parameters. When the unitTest utility was not used, i.e. when the component had features that 

required a more customized test bench, this directory would contain the customized unit test program, 

which was a variant of unitTest.  Customized test benches then tested the different implementations. 

3.6.3 Protocol Monitors for FPGA Components Witten with the HDL Model. 

While the unit test tools above served to test the components in a technology-independent manner, and 

tested whether the resulting data was correct, the HDL implementations executing on FPGAs and in 

simulators also required testing at a lower level.  The external interfaces of the OpenCPI HDL workers 

utilized the OCP-IP interfacing definitions as profiled for OpenCPI.  These interfaces were called Worker 

Interface Profiles (WIPs), and were defined in the reference manual for the OpenCPI HDL Authoring 

Model [19].  To confirm that an HDL worker correctly obeyed the wire-level protocols defined in the 

WIPs 34F

35
, the concept and implementation of WIP Protocol Monitors were introduced. 

A WIP Protocol Monitor was an FPGA module that was inserted as a passive observer on an interface 

between two workers, or between the OpenCPI HDL infrastructure and a worker.  It verified that the 

correct signaling and/or monitor events were occurring at the interface, and then the outputted the series 

of events that it had observed.  

Two WIP protocol monitors were implemented, one for the Worker Control Interface (WCI) and one for 

the Worker Streaming Interface (WSI).  A Capture Worker was implemented to capture the event outputs 

of the protocol monitors. The Protocol Monitors and the Capture Workers are shown in Figure 20. 

The Protocol Monitors observed the interfaces either in real hardware or in a simulation environment, and 

reported the events as output messages on their respective WSI output interfaces.  Each monitor was 

connected to a Capture Worker that time-stamped and stored the events in its respective private memory. 

                                                      
33

 RCC vs. HDL vs. OCL 
34

 written in C Language 
35

 i.e., the protocol of the data and control signals at each interface. 
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After execution, the software read the stored events. This information was used to assess any protocol 

violations and to measure the performance. 

 

 

 

Figure 20. Protocol Monitors and Capture Workers 
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4.0 RESULTS 

This project focused on closing several technical gaps, including issues associated with the ease of use, 

maturity improvements and application experiments.  Each effort tested both the premise of OpenCPI’s 

value and the suitability of the actual existing implementation of tools and runtime.  The results were fully 

captured in the evolved and enhanced version of OpenCPI residing in the Open Source Repository at the 

Opencpi.org website. The OpenCPI tools, runtime infrastructure, components, applications, and 

documentation were all expanded and improved. 

4.1 Performance and Time Measurement 

The project requirements motivated the use of tools, many of which were oriented towards understanding 

the relative timing of events in the parts of the OpenCPI system. Some of these tools were focused on the 

component and the application developments, while others were focused on the measurement and fine-

tuning of the infrastructure.  This section describes in more detail these measurement-related efforts. 

4.1.1 OCL Authoring Model Measurements. 

In the course of developing the OCL-GPU Authoring Model, several measurements of code complexities 

were made, which were determined in terms of the Source Lines of Code (SLOC). The SLOC is a 

software metric that measures the size of a computer program by counting the number of lines in the text 

of the program's source code. The SLOC is one estimate of the programming productivity of a software 

code. Three application codes were generated with both OpenCL and OCL.  The results of the respective 

SLOC measurements are presented in Table 5. 

The three applications that were compared were Vector Addition, 1-Dimensional Fast Fourier Transform 

(FFT), and Matrix Multiply. The host SLOC for the OCL was technology independent, as the same host 

code was applied to components written in either model.  The host SLOC for OpenCL was specific to 

OpenCL. Regardless of the components size, the additional lines of the kernel codes and of the XML 

codes were modest.  Recent enhancements have reduced this further. 

 

 

  

Table 5. OCL SLOC 

 Applications 

 Vector Addition 1-D FFT Matrix Multiply 

Code OpenCL OCL OpenCL OCL OpenCL OCL 

Host* 277/49 204/19 301/37 200/15 498/51 239/19 

Kernel 9 22 905 918 91 104 

XML 0 11 0 15 0 11 

 

*The Host is the total SLOC/relevant SLOC. 
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Table 6. OCL Model Execution Time Comparisons 

 Applications 

 Vector Addition 1D-FFT Matrix Multiply 

 OpenCL OCL OpenCL OCL OpenCL OCL 

Execution Time 

(msec) 
28.66 28.66 880.64 880.65 8.21 8.21 

Notes 

• Vector length 11.5 

million 32-bit floats 

• I-O bound 

• NVIDIA kernel 

• 1024 1K 1D FFTs 

• 400 GFLOPS 

(5*NLog2(N) 

• I-O bound 

• Kernel from Apple SDK 

• Dimensions   

   A(800 x 1600),  

   B(800 x 800),  

   C(800 x 1600) 

• I-O Bound (250 

GFLOPS) 

• NVIDIA kernel 

 

Another set of measurements that were taken were the execution times for these applications. Table 6 lists 

these measured execution times. Based upon these results, the OCL performance as measured in 

execution times for the codes written with OpenCL and OCL were, within experimental error, the same.  

4.1.2 Event Capture Synchronization across Platforms. 

The OpenCPI system was designed for multiple processing platforms including CPUs, GPUs, FPGAs and 

GPPs. To properly measure system timing, a timing infrastructure provided the timing of the events 

through synchronization across the complete system. The results of a common timing capability are 

addressed here. 

While an application-level timekeeping clock time required a common clock time, capturing the relative 

time across a system did not.  Time across a system required an understanding of the relationships 

between the clocks used on the different platforms. Several techniques were experimented with to achieve 

this. 

For FPGA platforms OpenCPI had a built-in measurement mechanism to understand the round-trip time 

for a GPP to access a FPGA’s registers using load and store instructions across the control plane.  This 

was used to accurately capture the difference between the clocks on the GPP and on the FPGA. 

On the GPP Linux itself, the CPU’s high-speed clock, which executed at GHz, executed independently of 

the system time obtained via the OS APIs.  Here each platform component entity had a local clock. The 

relative behaviors of the clocks were measured.  The local times were timestamped, and during post-

processing the respective timestamps were normalized to single timescale. 

The post-processing of event data sorted all of the events into a common timeline, and also converted the 

data to a standard event timing format used by hardware simulators.  This was viewed with the open 

source simulation viewer GTKWave, as shown in the screen shot Figure 21. 
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Figure 21. Viewing Timed Events with the GTKWave 

 

4.2 Application and Component Examples 

During the course of the project several components and applications were developed from components, 

and these were placed in the open source repository as examples for future users. In addition to the 

OpenCV applications and components that have been described, twelve additional components and three 

additional applications were developed and tested. 

To demonstrate the implementation selection and scoring capabilities, a best-fit application and a set of 

simple sine wave generation components were developed and tested. To illustrate how an application 

executed different implementations of the same component specifications, an application was executed 

that requested different distortion and throughput values, and the infrastructure automatically selected 

different implementations. When the acceptable distortion increased, a higher throughput implementation 

was used. 

4.2.1 Frequency Shift Key Radio Application. 

The final phase of the project was to take an existing DoD application and do a comparison by first 

executing its original code on its original platform. That code was then to be re-engineered and re-

implemented with OpenCPI, and then re-executed on the same platform. 

An agreement was made with a government agency to execute the Frequency Shift Key (FSK)/ Radio on 

its intended platform, which was the N210 platform. The platform-enabling work was completed while 

waiting for the application to arrive. 

The original application was ultimately not available in an unclassified form, and an alternative 

application was received to be executed on the original N210 platform. However, the supplied 

unclassified code was incomplete due to proprietary restrictions, and only some of the code was 

executable. The FSK modem application was a send and receives radio waveform that is described in 

Figure 22. 

 



 

Approved for Public Release; Distribution Unlimited.  

43 

 

 

 

 

All of the executable component implementations had been written in software. This configuration 

represented the functionality of the delivered VHDL code plus the file I-O, which received data from a 

file for the modulation, and then stored the demodulated received data in another file. The loopback 

component was used in testing without the actual ADC/DAC hardware. This loopback configuration was 

executed for testing purposes. In the complete application, which was not received due to proprietary 

restrictions, there was an additional DSP code that performed the pulse-shaping of the data before the 

modulation, and then performed the baud tracking. Also, in the real hardware platform, further up/down 

Intermediate Frequency (IF) and Radio Frequency (RF) conversions were based on other hardware 

proprietary controls. 

To make the best of the situation, the application as received was re-engineered as an OpenCPI 

application in which the component definitions were created for all of the components, and the software 

implementations were created for all of the components except for the DSP code. An example application 

named fsk_modem was created that executed all the components with separate software and FPGA 

implementations. This was executed in a software-only environment. However, since the test data and the 

test vectors were not received, the software versions of the components were not verified as being 

numerically correct. 

The components that were created for the application were the Symmetric Filter Real, the Symmetric 

Finite Impulse Response (FIR) Filter Complex, the FSK Modulation, the Cascade Integrator-Comb (CIC) 

High Pass Filter, the Loopback35F

36
, the Noise Generator36F

37
, the DDS Frequency Generator, the Mixer, the 

CIC Low Pass Filter, and the Frequency Modulation (FM) Demodulator. 

                                                      
36
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Figure 22. FSK Radio Application 
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The VHDL source code was analyzed as part of the plan to use the HDL Authoring Model FPGA workers 

to wrap VHDL codes.  These workers were based upon the same component specifications that the 

software implementations were written to.  Since all of the original code was VHDL, the HDL Authoring 

Model for VHDL was enhanced to meet these needs. Compliable VHDL skeletons that were generated 

for the VHDL components were based on the component definitions created during the re-engineering 

process. 

This application was completed for the execution of all the components, the software implementations, 

and the VHDL skeletons for the HDL components. The wrapped and functional FPGA components were 

incomplete. 

A number of enhancements depended on third party technology, some of which was not open source and 

some of which was hardware.  In these cases the results would require any user or developer to obtain, 

install and possibly purchase this other technology.  Some of these were also developed and tested against 

a particular version of third part technology, but there was no further support for keeping it up to date.  In 

these cases updates may be required to exercise the enhancements.   

4.2.2 Documentation. 

Finally, a number of these tasks were essentially proof-of-concept efforts that established OpenCPI’s 

feasibility and suitability, but require additional efforts to achieve complete functionality and 

performance. A generic Authoring Model Reference [20] was developed that specifies the concepts of 

OpenCPI. 

The OpenCPI’s internal software architecture allowed most major modules to be optionally executed as 

runtime drivers. A user can configure and use only the modules needed. There are four types of plug-in 

driver modules, which are the containers, the RDMA/Internal dataplane, the Message/External dataplane, 

and the library.  This project delivered one new container driver, the OCL for GPUs, and one dramatically 

enhanced container, the HDL for fully discoverable Ethernet-based FPGAs. Also, three new 

RDMA/Internal Dataplane drivers were developed, the OFED, the RDMA-over-UDP, and the RDMA-

over-Ethernet. There were two new Message/External Dataplane drivers, DDS and the one-way CORBA 

for SCA.  A library driver model was created as one of the ease-of-use tasks, and one library driver that 

executed a typical search path and a directory hierarchy was developed.   

Lower level platform infrastructure models were developed on the platforms, including the two newest 

FPGA platforms, the Altera Stratix4 development PCI-Express board and the Ettus N210 

Xilinx/Spartan3A on Ethernet w/ADC/DAC.  The hardware-specific modules that make up these 

OpenCPI platforms are now also OpenCPI.  A Linux kernel driver for both low-level PCI-based 

access/DMA and privileged Ethernet-level protocol processing was fully implemented. It was based on an 

earlier skeletal prototype.  

In addition to the major runtime modules, this project created and enhanced the nine development tools 

listed Table 7. To provide examples and tests for users, and as a result of the integration experiments, 

fifteen new applications were developed, along with the thirty components used in them.  These are useful 

not only as application building blocks, but also as regression tests. 
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Table 7. Development Tools 

Name  Purpose 

ocpidds new Interconverting DDS and OpenCPI metadata  

ocpiocl 
new Compiling OpenCL source code to vendor-specific binaries  

ocpigen updates Generating code skeletons major updates for VHDL and OCL 

timeCvt 
new Generating standard VCD files for event/waveform viewing  

ocpisca 
update Generating OpenCPI metadata from SCA metadata 

scripts  
new Building HDL code for Altera 

scripts 
new Building OCL code for OpenCL 

scripts 
new Building HDL VHDL code (vs. Verilog). 

spreadsheet template  
new Analyzing performance data 

 

This work motivated other opportunistic improvements to all of the aspects of OpenCPI, and these 

improvements are in hundreds of code files.  As a result of this project OpenCPI is appropriate and usable 

to more users, has more configurations, and addresses more technologies. 

A summary of the open source documentation that was created by this and its preceding effort that is 

available on the OpenCPI website [2] is presented in Table 8. 
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Table 8. Open Source Documentation  

PDF File Description 

OpenCPI_Technical_Summary.pdf  Provides an overview of the OpenCPI technology and architecture along 

with introductory material common to the other OpenCPI reference 

documents. 

OpenCPI_Generic_Authoring_Mod

el.pdf  

Specifies the concept of an OpenCPI authoring model, and defines aspects 

common to all OpenCPI authoring models. 

OpenCPI_CDK_Reference.pdf  Describes the OpenCPI Component Development Kit which is a collection 

of command line and "make" level tools for developing OpenCPI 

components (workers). 

OpenCPI_Application_Control_Inte

rface.pdf  

Describes the C++ interface for launching and controlling OpenCPI 

application. 

OpenCPI_RCC_Reference.pdf The purpose of this document is to define the OpenCPI RCC Authoring 

Model. 

OpenCPI_OCL_Reference.pdf The purpose of this document is to define the OpenCPI OCL (OpenCL) 

Authoring Model. 

OpenCPI_HDL_Reference.pdf  The purpose of this document is to define the OpenCPI HDL Authoring 

Model. 

OpenCPI_HDL_App_Workers.pdf  This document describes the HDL application workers in the OpenCPI 

component library. 

OpenCPI_HDL_Device_Workers.p

df  

This document describes OpenCPI HDL device workers, which are IP 

blocks for FPGAs that on the "front" side present standard OpenCPI WIP-

profile interfaces for use by applications, and on the "back" side attach to 

external devices via pins of the FPGA. 

OpenCPI_HDL_Infrastructure.pdf  This document describes the OpenCPI infrastructure IP blocks and how they 

are used as the platform for OpenCPI applications on FPGAs. 

OpenCPI_Time_Performance.pdf Describes the OpenCPI absolute time service and the time and performance 

instrumentation (TMPI) profiling API. 

OpenCPI_RDMA_Protocol.pdf  This document is a functional specification for the OpenCPI data plane 

RDMA data transfer protocol (OCPIRDT). 

OpenCPI_Reference_Platform_Spec

ification.pdf  

Describes the OpenCPI Reference Platform in detail. The document provides 

a parts list for the most recent reference platform along with the software 

configuration on the system. The document also details the steps needed to 

bring up the FPGA board with an OpenCPI bitstream. 

CP289_v1_0.pdf 
Proposed modification to the JTRS SCA specification to support specialized 

hardware processors. 
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5.0 CONCLUSIONS 

The purpose of OpenCPI was to exploit and manage diverse technologies in embedded systems. This 

project increased the coverage of embedded systems by supporting technology diversity and component-

based development. Some of the key relevant attributes of these types of systems included component 

based architectures with their associated plug & play, reuse, and integration benefits. These component 

based systems included well-defined, open, and portable application programming environments for 

embedded, heterogeneous, and multi-processor applications. Also included were Metadata descriptor 

formats for the application structure, the deployment, the constraints, the connectivity and the hardware 

platform elements. A control plane model included a control from within an application through a 

Human/Computer Interface (HCI) and from a remote control that was outside of the application. A 

management model was developed for the install/upgrade/uninstall and the startup/shutdown of the 

application and hardware subsystems. Support from commercial off the shelf design and development 

tools was also addressed. 

Several applications and components were developed as examples. Contributions were made to the 

Authoring Models for different processing technologies, which added support for GPUs as an OpenCPI 

processing resource. The platform adaptation and enablement added support for the Altera FPGA 

platforms and tools. The support of data transport technology allowed for the Optical Fabrics Enterprise 

Distribution (OFED)/Infiniband usage for inter-component dataflow. The integration and coexistence 

with other frameworks demonstrated the usage of OpenCPI with the Open Computer Vision (OpenCV) 

library. The development of the ease-of-use enhancements allowed simple Extensible Markup Language 

(XML)-based applications to be adopted with component implementation preferences. The development 

of the application and component libraries supported search paths of the heterogeneous component 

libraries. The performance measurements supported event synchronization across the independent 

subsystems.  

The underlying OpenCPI baseline architecture was a software-defined platform, originally motivated by 

the Department of Defense (DoD) Programmable Communication Terminals. It was originally based on 

and was compliant with the Software Communication Architecture (SCA) developed in the Joint Tactical 

Radio System (JTRS) program [4].   

The specific baseline software platform that was developed had capabilities in several areas critical to the 

embedded DoD needs, including communications management that was suitable for fabric-based 

interconnection technologies. The control model did not require the related data plane overhead. The 

standardized integration of functions on FPGAs and Digital Signal Processors (DSPs) did not require any 

additional middleware. A standards-based portability model for FPGA applications was developed that 

was Hardware Description Language (HDL) independent and met the industry standard Open Core 

Protocol-International Partnership (OCP-IP) specifications. A scalable controlled data plane approach was 

developed for multi-processing configurations.  

In addition to these technical enhancements, several integration and application experiments were 

performed to assess and demonstrate how OpenCPI could coexist with other relevant frameworks for 

image and software radio processing, and how well OpenCPI served as an application environment for 

specific applications.  These efforts included instrumentation and measurements. 

Since OpenCPI was based on and embraced the principles of open source software, the software, 

firmware, FPGA codes, tools, and documentation were all posted on the Opencpi.org web site and 

released under an open source license. The key technical results of this work were embodied in the new 

and improved evolution of OpenCPI, as it addressed a combination of technical gap filling, hardening and 

ease-of-use enhancements. 

Outreach and community building exposed OpenCPI to additional users inside and outside of the defense 

and intelligence communities.  Some of this was based on ad hoc meetings and briefings, but there were a 
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number of specific events and workshops where OpenCPI was briefed at conferences. The community 

building was supported by meetings, test development, and web development, and was highlighted by a 

workshop at the Wireless Innovation Forum meeting. 

This project addressed the key functional gaps in the original open source prototype that inhibited the 

adoption of OpenCPI. The technology was harden and matured to increase the Technology Readiness 

Level (TRL). The barriers to OpenCPI development, testing, adoption and implementation were 

addressed, and the suitability for specific applications was determined. The documentation of this effort 

was significant, and the feedback was positive. Based on the support of the dataplane drivers, the GPU 

containers and the FPGA platforms, patterns for supporting new technologies have emerged.   



 

Approved for Public Release; Distribution Unlimited.  

49 

 

6.0 RECOMMENDATIONS 

Based on experience and conclusions of this project, and the fact that interest and experience are growing, 

it is believed that further efforts and investments are warranted.  However, new efforts specifically 

targeted at OpenCPI should not be research oriented, but rather focused on establishing a solid, perpetual 

open source community with critical mass to stay up to date with the relevant technologies. 

Modest government support is justified to maintain a baseline and provide confidence and credibility.  

There are numerous examples of government support for baseline governance and maintenance of such a 

resource.  Building and maintaining a repository of components and platform support drivers would be 

beneficial to the community.  Other sponsored projects for particular technologies should be based on 

specific needs of users, projects and programs. 

The specific goals of the application trade study are still very much valid. The bulk of the platform and 

application re-engineering work was completed, and additional efforts in the platform and VHDL support 

took the place of the part of the application study work that could not be undertaken.  Finishing this work 

would be value, feasible, and modest, although the proprietary platform baseline is still an issue. 

More and more developers assume a GUI-centered development process, and building the appropriate 

technical bridges to enable the OpenCPI component and application development to take place in the 

Eclipse environment would improve its acceptance. The government-sponsored RedHawk framework is 

an example of this, but there are others. Even commercial open source packages such as Code-Sorcery 

(now part of Mentor Graphics) may be a good integration target.  Similarly, building technical integration 

bridges with MatLab developments, or the open source Octave equivalent, would allow OpenCPI to 

connect with other aspects of the overall application development process. 

Several areas of additional technological development would be valuable, including but not limited to 

multilevel security, Tilera many-cores, Eclipse Integration, and GPU Direct Memory Access (DMA). The 

availability of perpetual testing, continuous integration, additional tutorial examples, driver 

documentation, bug-tracking and road-mapping would be invaluable. A clearer path is needed for new 

developers to contribute to these and similar technology drivers.  

The ease-of-use focus on applications and components did not apply to the driver development, which is 

still only available to OpenCPI experts.  While the internal architecture has evolved to facilitate these 

drivers, additional guidance and/or documentation needs to be developed. 

While there were enthusiastic early users in electronic warfare and signals intelligence, the OpenCPI 

community is currently finite. The dominant community building focus was to incubate several different 

embedded communities. A number of useful tools, technologies and practices were identified and tested 

for testing platforms, components, and applications.  Continual institutionalizing, monitoring, and 

managing OpenCPI are beyond the scope of this project. Now what is needed is a perpetual and 

comprehensive development and testing community that would keep all of the developed functionality 

fresh and current. 

Further study relating to the acquisition issues for embedded development is warranted.  While the 

application trade study intended to look at a particular application and how it would be improved when 

using OpenCPI methodology, this does not capture the benefits of component-based design and the open 

source heterogeneous platform support across multiple projects and programs.  The commercial barriers 

to sharing at this level are significant and costly.  An ecosystem of support services that can support 

multi-vendor heterogeneous platforms is a key ingredient.  This is not so much a technical initiative as a 

policy challenge that deserves further attention. 
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8.0 LIST OF SYMBOLS, ABBREVATIONS, AND ACRONYMS 

ACI Application Control Interface 

ADC Analog-to-Digital Converter 

API Application Programming Interface 

ASIC Application-Specific Integrated Circuit 

BSV Bluespec System Verilog 

CBD Component-Based Development 

CDK Component Developer’s Kit 

CentOS Community Enterprise Operating System 

CF Core Framework 

CIC Cascade Integrator-Comb 

CORBA Common Object Request Broker Architecture 

COTS Commercial off the Shelf 

CPU Central Processing Unit 

CSV Comma Separated Value (file format) 

CUDA Compute Unified Device Architecture 

DAC Digital to Analog Converter 

DDC Digital Down-Converter 

DDS Data Distribution Service 

DG DataGram 

DMA Direct Memory Access 

DoD Department of Defense 

DRAM Dynamic Random-Access Memory 

DSP Digital Signal Processor 

FCCM Field-Programmable Custom Computing Machines 

FIFO First In/First Out 

FIR Finite Impulse Response 

FM Frequency Modulation 

FPGA Field Programmable Gate Array 
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FSK Frequency Shift Keying 

FST Fast Simulator Trace 

GBE GigaBit Ethernet 

GFLOPS 10
9
 FLoating-point Operations per Second 

GIOP General Inter-ORB Protocol 

GPGPU General Purpose Graphics Processing Unit 

GPP General Purpose Processor 

GPU Graphics Processing Unit 

GUI Graphical User Interface 

HCI Human/Computer Interface 

HDL Hardware Description Language 

I In-phase 

IDL Interface Description Language 

IF Intermediate Frequency 

IO Input-Output 

IP Internet Protocol 

ISO International Organization for Standardization 

iWARP Internet Wide Area RDMA Protocol 

JTRS Joint Tactical Radio System 

L2 Link layer 

LGPL Lesser GNU Public License 

LXT interLaced eXtensible Trace 

MILS Multiple Independent Levels of Security 

MIT Massachusetts Institute of Technology 

MPI Message Passing Interface 

NFS Network File System 

NIC Network Interface Card 

OCL OpenCL Authoring Model 

OCP-IP Open Core Protocol — International Partnership 
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OFED Open Fabrics Enterprise Distribution 

omniORB a robust high performance CORBA ORB for C++ and Python 

OpenCL Open Computing Language 

OpenCPI Open source Component Portability Infrastructure 

OpenCV Open Computer Vision 

OpenGL Open Graphics Library 

OMG Object Management Group 

ORB Object Request Broker 

OS Operating System 

OSSIE Open source Software Communication Architecture Implementation: Embedded 

PCI Peripheral Component Interconnect 

POSIX Portable Operating System Interface 

PPS Passive Parallel Synchronous 

Q Quadrature 

RCC Resource-Constrained C-language 

RDMA Remote Direct Memory Access 

RF Radio Frequency 

RHEL Red Hat Enterprise Linux 

RoCCE RDMA over Converged Enhanced Ethernet 

SCA Software Communications Architecture 

SCARI Software Communications Architecture Reference Implementation 

SDR Software Defined Radio 

SIGINT Signals Intelligence 

SLOC Source Lines of Code 

Soft-

RoCEE 

Soft-RDMA over the Converged Enhanced Ethernet 

SWAP Size, Weight, and Power 

TCP Transmission Control Protocol 

TRL Technology Readiness Level 
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UDP User Datagram Protocol 

UML Unified Modeling Language 

URL Universal Resource Locator 

UUID Universal Unique Identifier 

VCD Value Change Dump (file format) 

VHDL VHSIC Hardware Description Language 

VHSIC Very High Speed Integrated Circuit 

VZT Verilog/VHDL Zipped Trace 

WCI Worker Control Interface 

WIP Worker Interface Profile 

WSI Worker Streaming Interface 

XML Extensible Markup Language 

 




